

Functional Description

The ABT16541 contains sixteen non-inverting buffers with 3-STATE outputs. The device is byte (8 bits) controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16 -bit operation.

Logic Diagrams

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Any Output

> in the Disabled or
Power-Off State
in the HIGH State
Current Applied to Output
in LOW State (Max)

DC Latchup Source Current
Over Voltage Latchup (I/O)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

-30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}}
$$

twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
$-500 \mathrm{~mA}$

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |
| Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$ | |
| \quad Data Input | $50 \mathrm{mV} / \mathrm{ns}$ |
| Enable Input | $20 \mathrm{mV} / \mathrm{ns}$ |

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \hline \operatorname{Min} \\ & \text { Min } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$
I_{H}	Input HIGH Current			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Note } 3) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Note } 3) \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$\mathrm{I}_{\text {OHH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	0-5.5V	$\mathrm{V}_{\text {Out }}=2.7 \mathrm{~V} ; \overline{\mathrm{OE}}_{\mathrm{n}}=2.0 \mathrm{~V}$
$\mathrm{l}_{\text {OzL }}$	Output Leakage Current			-10	$\mu \mathrm{A}$	0-5.5V	$\mathrm{V}_{\text {Out }}=0.5 \mathrm{~V} ; \overline{\mathrm{OE}}_{\mathrm{n}}=2.0 \mathrm{~V}$
Ios	Output Short-Circuit Current	-100		-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{I}_{\text {zz }}$	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \text { All Other Pins GND } \end{aligned}$
${ }^{\text {CCH }}$	Power Supply Current			100	$\mu \mathrm{A}$	Max	All Outputs HIGH
$\mathrm{I}_{\text {CLL }}$	Power Supply Current			60	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {CCZ }}$	Power Supply Current			100	$\mu \mathrm{A}$	Max	$\overline{\mathrm{OE}}_{\mathrm{n}}=\mathrm{V}_{\mathrm{CC}}$ All Others at V_{CC} or GND
$I_{\text {CCT }}$	Additional $\mathrm{I}_{\mathrm{CC}} /$ Input Outputs Enabled Outputs 3-STATE Outputs 3-STATE			$\begin{aligned} & \hline 2.5 \\ & 2.5 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$	Max	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ \text { Enable Input } \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ \text { Data Input } \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \hline \end{array}$
$\mathrm{I}_{\text {CCD }}$	Dynamic I_{CC} (Note 3) \quad No Load			0.1	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open, $\overline{\mathrm{OE}}_{\mathrm{n}}=$ GND One Bit Toggling, 50\% Duty Cycle
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}		0.4	0.7	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	-1.3	-1.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)
$\mathrm{V}_{\text {OHV }}$	Minimum HIGH Level Dynamic Output Voltage	2.7	3.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	2.0	1.4		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)

DC Electrical Characteristics (Continued)

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage		1.2	0.8	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)
Note 3: G Note 4: Note 5: Guarantee	uaranteed but not tested. ax number of outputs defined as (n). n-1 data inputs ax number of data inputs (n) switching. $\mathrm{n}-1$ inputs d, but not tested.	iven ng	V. On Inpu	r-test s	Guaran hing: 3 V	but no resho	sted. (VILD), OV to threshold

AC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation	1.0	2.3	3.4	1.0	3.4	ns
$\mathrm{t}_{\text {PHL }}$	Delay Data to Outputs	1.0	2.7	3.9	1.0	3.9	
$\mathrm{t}_{\text {PZH }}$	Output Enable	1.5	3.5	5.2	1.5	5.2	ns
$\mathrm{t}_{\text {PZL }}$	Time	1.5	3.5	6.0	1.5	6.0	
$\mathrm{t}_{\text {PHZ }}$	Output Disable	1.0	4.2	5.1	1.0	5.1	ns
$t_{\text {PLZ }}$	Time	1.0	3.2	5.1	1.0	5.1	

Extended AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 7)			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 1 Output Switching (Note 8)		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 9)		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {TOGGLE }}$	Maximum Toggle Frequency		100						MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Outputs	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\mathrm{PZH}} \\ & t_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 9.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\mathrm{PHZ}} \\ & t_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 6.7 \\ & 6.7 \end{aligned}$					ns

Note 7: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 8: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capac itors in the standard AC load. This specification pertains to single output switching only.
Note 9: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 10: The 3-STATE delay times are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and have been excluded from the datasheet.

Skew				
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 11)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 12)	Units
		Max	Max	
$\mathrm{t}_{\mathrm{OSHL}}$ (Note 13)	Pin to Pin Skew HL Transitions	1.0	1.5	ns
tosth (Note 13)	Pin to Pin Skew LH Transitions	1.0	1.5	ns
$t_{P S}$ (Note 14)	Duty Cycle LH-HL Skew	1.5	1.5	ns
tost (Note 13)	Pin to Pin Skew LH/HL Transitions	1.7	2.0	ns
$t_{P V}$ (Note 15)	Device to Device Skew LH/HL Transitions	2.0	2.5	ns

Note 11: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase
(i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

Note 12: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.
Note 13: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$), LOW-to-HIGH ($\mathrm{t}_{\mathrm{OLLH}}$), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (tost). The specification is guaranteed but not tested.
Note 14: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.
Note 15: Propagation delay variation for a given set of conditions (i.e., temperature and $V_{C C}$) from device to device. This specification is guaranteed but not tested.

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}($ Note 16)	Output Capacitance	9.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note 16: $\mathrm{C}_{\text {OUT }}$ is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$; per MIL STD-883, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
